Volatility and arbitrage

Robert Fernholz
INTECH

Joint research with
Ioannis Karatzas and Johannes Ruf

University of Southern California
October 17, 2016
In a stock market, if there is “adequate volatility”, then there is relative arbitrage. We shall investigate what “adequate volatility” might mean, when there is long-term arbitrage, and when there is arbitrage over arbitrarily short intervals.
The market

Suppose we have a market of stocks X_1, \ldots, X_n represented by positive continuous semimartingales that satisfy

$$d \log X_i(t) = \gamma_i(t) \, dt + \sum_{\nu=1}^{d} \xi_{i\nu}(t) \, dW_{\nu}(t),$$

for $i = 1, \ldots, n$, where $d \geq n$, (W_1, \ldots, W_d) is a d-dimensional Brownian motion, and the processes γ_i and $\xi_{i\nu}$ are measurable, adapted to the Brownian filtration, and locally integrable or square-integrable. The process X_i represents the total capitalization of the ith company. The market weights are

$$\mu_i(t) = \frac{X_i(t)}{X_1(t) + \cdots + X_n(t)},$$

for $i = 1, \ldots, n$.
Covariance

The \textit{ijth covariance process} σ_{ij} is defined for $i, j = 1, \ldots, n$ by

$$
\sigma_{ij}(t) \triangleq \frac{d\langle \log X_i, \log X_j \rangle_t}{dt} = \sum_{\nu=1}^{d} \xi_{i\nu}(t)\xi_{j\nu}(t), \quad \text{a.s.}
$$

If the eigenvalues of the covariance matrix $\sigma(t) = (\sigma_{ij}(t))$ are uniformly bounded away from zero over an interval $[0, T]$, then the market is said to be \textit{strongly nondegenerate} over the interval.
Portfolios

A portfolio \(\pi \) is defined by its weight processes, \(\pi_1, \ldots, \pi_n \), which are bounded, measurable, adapted to the Brownian filtration, and add up to one. The portfolio value process \(Z_\pi \) represents the (positive) value of the portfolio and satisfies

\[
d \log Z_\pi(t) = \sum_{i=1}^{n} \pi_i(t) d \log X_i(t) + \gamma^*_\pi(t) dt, \quad \text{a.s.,}
\]

where the excess growth rate process \(\gamma^*_\pi \) is defined by

\[
\gamma^*_\pi(t) \triangleq \frac{1}{2} \left(\sum_{i=1}^{n} \pi_i(t) \sigma_{ii}(t) - \sum_{i,j=1}^{n} \pi_i(t) \pi_j(t) \sigma_{ij}(t) \right).
\]

Due to the first equation, \(\gamma^*_\pi \) is effectively observable.
The market portfolio

The *market portfolio* μ is defined by the market weights μ_1, \ldots, μ_n, and

$$Z_\mu(t) = X_1(t) + \cdots + X_n(t), \quad \text{a.s.,}$$

with appropriate initial conditions.

The *ijth relative covariance process* τ_{ij} is defined for $i, j = 1, \ldots, n$ by

$$\tau_{ij}(t) \triangleq \frac{d \langle \log \mu_i, \log \mu_j \rangle_t}{dt} = \frac{d \langle \log(X_i/Z_\mu), \log(X_j/Z_\mu) \rangle_t}{dt}$$

$$= \sigma_{ij}(t) - \sigma_{i\mu}(t) - \sigma_{j\mu}(t) + \sigma_{\mu\mu}(t), \quad \text{a.s.}$$
Diverse markets

A market is *diverse* over the interval $[0, T]$ if there exists a $\delta > 0$ such that for $i = 1, \ldots, n$,

$$\sup_{t \in [0, T]} \mu_i(t) < 1 - \delta, \quad \text{a.s.}$$

Lemma. If a market is strongly nondegenerate and diverse over $[0, T]$, then there exists $\varepsilon > 0$ such that for $i = 1, \ldots, n$,

$$\inf_{t \in [0, T]} \tau_{ii}(t) > \varepsilon, \quad \text{a.s.}$$

Proof. (F (2002).) Let $x(t) = (\mu_1(t), \ldots, \mu_i(t) - 1, \ldots, \mu_n(t))$, so $\tau_{ii}(t) = x(t)\sigma(t)x^T(t) \geq c\|x(t)\|^2 > c(1 - \mu_i(t))^2 > c\delta^2$, a.s. \qed
Relative arbitrage

For $T > 0$, there is *relative arbitrage* versus the market on $[0, T]$ if there exists a portfolio π such that

$$
\mathbb{P}\left[\frac{Z_\pi(T)}{Z_\mu(T)} \geq \frac{Z_\pi(0)}{Z_\mu(0)} \right] = 1,
$$

$$
\mathbb{P}\left[\frac{Z_\pi(T)}{Z_\mu(T)} > \frac{Z_\pi(0)}{Z_\mu(0)} \right] > 0.
$$

It is *strong relative arbitrage* if

$$
\mathbb{P}\left[\frac{Z_\pi(T)}{Z_\mu(T)} > \frac{Z_\pi(0)}{Z_\mu(0)} \right] = 1.
$$

We are interested in conditions under which volatility produces relative arbitrage.
Functionally generated portfolios

Suppose that S is a positive C^2 function defined on a neighborhood of the open simplex

$$\Delta^n = \{x \in \mathbb{R}^n : x_1 + \cdots + x_n = 1, x_i > 0\}.$$

Then S generates a portfolio π such that

$$d \log \left(\frac{Z_\pi(t)}{Z_\mu(t)}\right) = d \log S(\mu(t)) + d\Theta(t), \quad \text{a.s.,}$$

for $t \in [0, T]$, where the drift process Θ is of bounded variation. The weights π_i and drift process Θ are determined by the partial derivatives of S and the covariance matrix of the market. (F (2002).)
Relative variance and relative arbitrage

Proposition 1. If there exists an \(\varepsilon > 0 \) and a \(k \in \{1, \ldots, n\} \) such that \(\tau_{kk}(t) > \varepsilon \) for all \(t \in [0, T] \), a.s., then there exists strong relative arbitrage versus the market over \([0, T]\).

Proof. (FKK (2005).) For \(p > 1 \), consider the function \(S(x) = x_k^p \), defined for \(x \in \Delta^n \), the unit simplex in \(\mathbb{R}^n \). The function \(S \) generates the portfolio \(\pi \) with weights

\[
\pi_i(t) = \begin{cases}
 p - (p - 1)\mu_i(t), & \text{for } i = k, \\
 -(p - 1)\mu_i(t), & \text{otherwise},
\end{cases}
\]

and the value process \(Z_{\pi} \) satisfies

\[
d \log \left(\frac{Z_{\pi}(t)}{Z_{\mu}(t)} \right) = d \log \mu_k^p(t) - \frac{p^2 - p}{2} \tau_{kk}(t) \, dt, \quad \text{a.s.}
\]
Relative variance and relative arbitrage

Essentially, the portfolio π holds p dollars of X_k and $-(p - 1)$ dollars of the market portfolio. We have

$$\log \left(\frac{Z_\pi(T)}{Z_\mu(T)} \right) - \log \left(\frac{Z_\pi(0)}{Z_\mu(0)} \right)$$

$$= \log \left(\frac{\mu_k^p(T)}{\mu_k^p(0)} \right) - \frac{p^2 - p}{2} \int_0^T \tau_{kk}(t) \, dt$$

$$\leq -p \log \mu_k(0) - \frac{(p^2 - p)\epsilon T}{2}, \quad \text{a.s.}$$

If p is large enough, then Z_π will underperform Z_μ, a.s. By shorting π and immersing it in a large amount of the market portfolio, we can construct a long-only portfolio that outperforms Z_μ, a.s., over $[0, T]$. \[
\square
\]
The market excess growth rate γ^*_μ measures the average relative volatility available in the market:

$$\gamma^*_\mu(t) = \frac{1}{2} \left(\sum_{i=1}^{n} \mu_i(t) \sigma_{ii}(t) - \sigma_{\mu\mu}(t) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \mu_i(t) \left(\sigma_{ii}(t) - 2\sigma_{i\mu}(t) + \sigma_{\mu\mu}(t) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \mu_i(t) \tau_{ii}(t), \quad \text{a.s.}$$
Cumulative γ^*_μ for the U.S. market
Market entropy

The *entropy* function S is defined by

$$S(x) \triangleq - \sum_{i=1}^{n} x_i \log x_i,$$

for $x \in \Delta^n$. The entropy function satisfies

$$0 \leq S(x) \leq \log n$$

where the value 0 is attained only at the vertices of the simplex, and $\log n$ is attained only when all the x_i are equal to $1/n$. For a constant $c \geq 0$, we define the *generalized entropy function* by

$$S_c(x) \triangleq S(x) + c, \quad \text{for } x \in \Delta^n.$$
Entropy-weighted portfolios

The generalized entropy function S_c generates the portfolio π with weights

$$\pi_i(t) = \frac{c - \log \mu_i(t)}{S_c(\mu(t))} \mu_i(t),$$

and the value process Z_π of this entropy-weighted portfolio satisfies

$$d \log \left(\frac{Z_\pi(t)}{Z_\mu(t)} \right) = d \log S_c(\mu(t)) + \frac{\gamma^*_\mu(t)}{S_c(\mu(t))} dt, \quad \text{a.s.}$$
Proposition 2. Suppose that in a market defined for $t \geq 0$ there is an $\varepsilon > 0$ such that for all t, $\gamma_\mu^*(t) > \varepsilon$, a.s. Then for large enough T, there exists strong relative arbitrage versus the market on $[0, T]$.

Proof. For $c > 0$, consider the portfolio π generated by S_c. Then

$$
\log \left(\frac{Z_\pi(T)}{Z_\mu(T)} \right) - \log \left(\frac{Z_\pi(0)}{Z_\mu(0)} \right) = \log \left(\frac{S_c(\mu(T))}{S_c(\mu(0))} \right) + \int_0^T \frac{\gamma_\mu^*(t)}{S_c(\mu(t))} dt
$$

$$
> \log \left(\frac{c}{c + \log n} \right) + \frac{\varepsilon T}{c + \log n}, \quad \text{a.s.}
$$

Hence, it is just a matter of choosing T large enough. \qed
Short-term relative arbitrage

It would perhaps be nice if \(\gamma^*_\mu(t) > \varepsilon > 0 \) implied short-term relative arbitrage, but this is not quite true. Instead:

Proposition 3. For \(T > 0 \), suppose that there exists an \(\varepsilon > 0 \) such that

\[
\gamma^*_\mu(t) > \varepsilon, \quad \text{a.s.,}
\]

for all \(t \in [0, T] \), and that for the entropy function \(S \),

\[
\text{ess inf}\{ S(\mu(t)) : t \in [0, T/2] \}
\leq \text{ess inf}\{ S(\mu(t)) : t \in [T/2, T] \}.
\]

Then there exists relative arbitrage versus the market on \([0, T]\).
Short-term relative arbitrage

Proof. Let

\[A = \text{ess inf}\{S(\mu(t)) : t \in [0, T/2]\}. \]

Since \(\gamma^*_\mu(t) \geq \varepsilon > 0 \) on \([0, T]\), a.s., not all the \(\mu_i \) can be constantly equal to \(1/n \), so

\[0 \leq A < \log n, \quad \text{a.s.} \]

Hence, we can choose \(\delta > 0 \) such that

\[A + 2\delta < \log n, \]

and

\[\mathbb{P}\left[\inf_{t \in [0, T/2]} S(\mu(t)) < A + \delta \right] > 0. \]
Short-term relative arbitrage

Let us define the stopping time

$$\tau_1 = \inf \{ t \in [0, T/2] : S(\mu(t)) \leq A + \delta \} \wedge T,$$

in which case

$$\mathbb{P} [\tau_1 \leq T/2] > 0.$$

We can now define a second stopping time

$$\tau_2 = \inf \{ t \in [\tau_1, T] : S(\mu(t)) = A + 2\delta \} \wedge T,$$

and we have $\tau_1 \leq \tau_2$, a.s.
Short-term relative arbitrage

Now consider the generalized entropy function

\[S_\delta(x) \triangleq S(x) + \delta, \]

for the same \(\delta > 0 \) as we chose above, so \(S_\delta(x) \geq \delta \). Let \(\pi \) be generated by \(S_\delta \), and we have

\[
\begin{align*}
\log \left(\frac{Z_\pi(\tau_2)}{Z_\mu(\tau_2)} \right) &- \log \left(\frac{Z_\pi(\tau_1)}{Z_\mu(\tau_1)} \right) \\
= \log S_\delta(\mu(\tau_2)) - \log S_\delta(\mu(\tau_1)) + \int_{\tau_1}^{\tau_2} \frac{\gamma^*_\mu(t)}{S_\delta(\mu(t))} \, dt, \quad \text{a.s.,}
\end{align*}
\]

for the times \(\tau_1 \) and \(\tau_2 \).
Short-term relative arbitrage

\[\log n \]

\[S(\mu(t)) \]

\[A, A+, A+2, 0, \log n, \delta, \delta, T/2, T, \tau_1, \tau_2 \]

Graph showing the function \(S(\mu(t)) \) with critical points at \(A, A+\delta, A+2\delta \) and \(\tau_1, \tau_2 \) on the horizontal axis from 0 to \(T \).
Suppose that $\tau_1 \leq T/2$, so $\tau_1 < \tau_2$, a.s. There are two cases:

1. If $\tau_2 < T$, then

$$\log S_\delta(\mu(\tau_2)) - \log S_\delta(\mu(\tau_1)) \geq \log(A + 3\delta) - \log(A + 2\delta) > 0, \; \text{a.s.,}$$

and since

$$\int_{\tau_1}^{\tau_2} \frac{\gamma^*_\mu(t)}{S_\delta(\mu(t))} dt > 0, \; \text{a.s.,}$$

we have

$$\log \left(\frac{Z_\pi(\tau_2)}{Z_\mu(\tau_2)} \right) - \log \left(\frac{Z_\pi(\tau_1)}{Z_\mu(\tau_1)} \right) > 0, \; \text{a.s.}$$
2. If $\tau_2 = T$, then

$$A + \delta \leq S_\delta(\mu(t)) < A + 3\delta, \quad \text{a.s.,}$$

for $t \in [\tau_1, T]$, a.s., so

$$\log S_\delta(\mu(\tau_2)) - \log S_\delta(\mu(\tau_1)) + \int_{\tau_1}^{\tau_2} \frac{\gamma^*_\mu(t)}{S_\delta(\mu(t))} \, dt$$

$$> \log \frac{A + \delta}{A + 2\delta} + \frac{\varepsilon T}{2(A + 3\delta)}, \quad \text{a.s.}$$

Again there are two cases:
Short-term relative arbitrage

1. If $A = 0$, let

 $$\delta = \frac{\varepsilon T}{6 \log 2},$$

 in which case,

 $$\log S_\delta(\mu(\tau_2)) - \log S_\delta(\mu(\tau_1)) + \int_{\tau_1}^{\tau_2} \frac{\gamma^*_\mu(t)}{S_\delta(\mu(t))} \, dt > \log \frac{A + \delta}{A + 2\delta} + \frac{\varepsilon T}{2(A + 3\delta)} = 0, \quad \text{a.s.},$$

 so

 $$\log \left(\frac{Z_\pi(\tau_2)}{Z_\mu(\tau_2)} \right) - \log \left(\frac{Z_\pi(\tau_1)}{Z_\mu(\tau_1)} \right) > 0, \quad \text{a.s.}$$
Short-term relative arbitrage

2. If $A > 0$, then

$$\lim_{\delta \downarrow 0} \left[\log \frac{A + \delta}{A + 2\delta} + \frac{\varepsilon T}{2(A + 3\delta)} \right] = \frac{\varepsilon T}{2A} > 0,$$

so for small enough $\delta > 0$

$$\log S_\delta(\mu(\tau_2)) - \log S_\delta(\mu(\tau_1)) + \int_{\tau_1}^{\tau_2} \frac{\gamma(\mu(t))}{S_\delta(\mu(t))} dt$$

$$> \log \frac{A + \delta}{A + 2\delta} + \frac{\varepsilon T}{2(A + 3\delta)} > 0, \quad \text{a.s.,}$$

and

$$\log \left(\frac{Z_\pi(\tau_2)}{Z_\mu(\tau_2)} \right) - \log \left(\frac{Z_\pi(\tau_1)}{Z_\mu(\tau_1)} \right) > 0, \quad \text{a.s.}$$
Short-term relative arbitrage

Now consider the portfolio η defined by:

1. For $t \in [0, \tau_1)$, $\eta(t) = \mu(t)$, the market portfolio.

2. For $t \in [\tau_1, \tau_2)$, $\eta(t) = \pi(t)$, the portfolio generated by S_δ with δ chosen as in the two cases we considered.

3. For $t \in [\tau_2, T]$, $\eta(t) = \mu(t)$.
Short-term relative arbitrage

If $\tau_1 = T$, then $\eta(t) = \mu(t)$ for all $t \in [0, T]$, so

$$\log \left(\frac{Z_\eta(T)}{Z_\mu(T)} \right) = \log \left(\frac{Z_\eta(0)}{Z_\mu(0)} \right), \quad \text{a.s.}$$

If $\tau_1 \neq T$, then $\tau_1 \leq T/2$ and $\tau_1 < \tau_2$, a.s. By the construction of η, we have

\[
\log \left(\frac{Z_\eta(T)}{Z_\mu(T)} \right) - \log \left(\frac{Z_\eta(0)}{Z_\mu(0)} \right) \\
= \log \left(\frac{Z_\pi(\tau_2)}{Z_\mu(\tau_2)} \right) - \log \left(\frac{Z_\pi(\tau_1)}{Z_\mu(\tau_1)} \right) \\
> 0, \quad \text{a.s.},
\]

with the inequality following from two the cases we considered.

Since $P[\tau_1 \neq T] > 0$, there exists relative arbitrage on $[0, T]$. \qed
Adequate volatility

Corollary. Suppose that $\gamma^*_\mu(t) > \varepsilon > 0$, a.s., for $t \in [0, T]$, and that the market is strongly nondegenerate over that interval. Then there exists relative arbitrage versus the market on $[0, T]$.

Proof. There are two cases:

1. If the market is diverse over $[0, T/2]$, then Proposition 1 ensures short-term strong relative arbitrage.

2. If the market is not diverse over $[0, T/2]$, then $A = 0$ in Proposition 3, and short-term relative arbitrage follows.
An example, with variations

Let \(n = 3 \), let \(T > 0 \), and let \(0 < a < e^{-T/2}/9 \). Suppose that \((W, \theta, B)\) is a 3-dimensional Brownian motion with the usual filtration \(\mathcal{F} \). For \(t \in [0, T] \) and for \(i = 1, 2, 3 \), define

\[
X_i(t) = e^{W(t) - t/2} \left(\frac{1}{3} + \varphi(t) e^{t/2} \cos (\theta(t) + (i - 1)2\pi/3) \right),
\]

where \(\varphi \) is a martingale driven by \(B \) with \(a < \varphi(t) < 3a \). Then the processes \(X_i \) are martingales, and it can be shown that \(\gamma^*_\mu(t) > 3a^2/4 \). Since the price processes in this market are martingales, relative arbitrage does not exist. Since the motions induced by \(W, \theta, \) and \(\varphi \) span \(\mathbb{R}^3 \), the covariance matrix is nonsingular. This market is not strongly nondegenerate.
An example, with variations

We define an \mathcal{F}-martingale ψ for $t \in [0, T]$ by

$$
\psi(t) = \int_0^t (a^2 - \psi^2(s)) dB(s),
$$

and we have

$$
-a < \psi(t) < a, \quad \text{a.s.}
$$

Then define φ for $t \in [0, T]$ by

$$
\varphi(t) = 2a + \psi(t),
$$

so

$$
a < \varphi(t) < 3a, \quad \text{a.s.},
$$

and

$$
d\langle \varphi \rangle_t = d\langle \psi \rangle_t = (a^2 - \psi^2(t))^2 dt, \quad \text{a.s.}
$$
An example
Let \(n = 3 \), let \(T > 0 \), and let \(0 < a < e^{-T/2}/9 \). Suppose that \((W, \theta, B)\) is a 3-dimensional Brownian motion with the usual filtration \(\mathcal{F} \). For \(t \in [0, T] \) and for \(i = 1, 2, 3 \), define

\[
X_i(t) = e^{W(t) - t/2} \left(\frac{1}{3} + \varphi(t)e^{t/2} \cos(\theta(t) + (i - 1)2\pi/3) \right),
\]

where \(\varphi \) is a martingale driven by \(B \) with \(a < \varphi(t) < 3a \). Then the processes \(X_i \) are martingales, and it can be shown that \(\gamma^*_\mu(t) > 3a^2/4 \). Since the price processes in this market are martingales, relative arbitrage does not exist. Since the motions induced by \(W, \theta, \) and \(\varphi \) span \(\mathbb{R}^3 \), the covariance matrix is nonsingular. This market is not strongly nondegenerate.
Variations

Let $n = 3$, let $T > 0$, and let $0 < a < e^{-T/2}/9$. Suppose that (W, θ, B) is a 3-dimensional Brownian motion with the usual filtration \mathcal{F}. For $t \in [0, T]$ and for $i = 1, 2, 3$, define

$$X_i(t) = e^{W(t) - t/2} \left(\frac{1}{3} + ae^{t/2} \cos (\theta(t) + (i - 1)2\pi/3) \right),$$

where φ is a martingale driven by B with $a < \varphi(t) < 3a$. Then the processes X_i are martingales, and it can be shown that $\gamma^*_\mu(t) > 3a^2/4$. Since the price processes in this market are martingales, relative arbitrage does not exist. Since the motions induced by W, θ, φ span \mathbb{R}^3, the covariance matrix is nonsingular. This market is not strongly nondegenerate.
Variations

Let \(n = 3 \), let \(T > 0 \), and let \(0 < a < e^{-T/2}/9 \). Suppose that \((W, \theta, B)\) is a 3-dimensional Brownian motion with the usual filtration \(\mathcal{F} \). For \(t \in [0, T] \) and for \(i = 1, 2, 3 \), define

\[
X_i(t) = e^{W(t)-t/2} \left(\frac{1}{3} + a \cos (\theta(t) + (i - 1)2\pi/3) \right),
\]

where \(\varphi \) is a martingale driven by \(B \) with \(a < \varphi(t) < 3a \). Then the processes \(X_i \) are martingales, and it can be shown that \(\gamma^*_\mu(t) > 3a^2/4 \). Since the price processes in this market are martingales, relative arbitrage does not exist. Since the motions induced by \(W, \theta, \) and \(\varphi \) span \(\mathbb{R}^3 \), the covariance matrix is nonsingular. This market is not strongly nondegenerate.
Variations

The weights $\mu_i(t)$ for the model

$$X_i(t) = e^{W(t) - t/2} \left(\frac{1}{3} + a \cos (\theta(t) + (i - 1)2\pi/3) \right),$$

lie in a circle on the simplex Δ^3 centered at $(1/3, 1/3, 1/3)$, so

$$S(\mu(t)) = (\mu_1^2(t) + \mu_2^2(t) + \mu_3^2(t))^{1/2} = \text{const.}$$

S generates a portfolio π with value function Z_π such that

$$d \log \left(\frac{Z_\pi(t)}{Z_\mu(t)} \right) = d \log S(\mu(t)) - \gamma^*_\pi(t) dt$$

$$= -\gamma^*_\pi(t) dt, \quad \text{a.s.}$$

Since $\gamma^*_\pi(t) > 0$, this produces immediate relative arbitrage.
Let \(n = 3 \), let \(T > 0 \), and let \(0 < a < e^{-T/2}/9 \). Suppose that \((W, \theta, B)\) is a 3-dimensional Brownian motion with the usual filtration \(\mathcal{F} \). For \(t \in [0, T] \) and for \(i = 1, 2, 3 \), define

\[
X_i(t) = e^{W(t) - t/2} \left(\frac{1}{3} + \varphi(t) \cos \left(\theta(t) + (i - 1)2\pi/3 \right) \right),
\]

where \(\varphi \) is a martingale driven by \(B \) with \(a < \varphi(t) < 3a \). Then the processes \(X_i \) are martingales, and it can be shown that \(\gamma^{\ast}_\mu(t) > 3a^2/4 \). Since the price processes in this market are martingales, relative arbitrage does not exist. Since the motions induced by \(W, \theta, \) and \(\varphi \) span \(\mathbb{R}^3 \), the covariance matrix is nonsingular. This market is not strongly nondegenerate.
Let $n = 3$, let $T > 0$, and let $0 < a < e^{-T/2}/9$. Suppose that (W, θ, B) is a 3-dimensional Brownian motion with the usual filtration \mathcal{F}. For $t \in [0, T]$ and for $i = 1, 2, 3$, define

$$X_i(t) = e^{W(t) - t/2} \left(\frac{1}{3} + \varphi(t)e^{t/2} \cos(\theta(t) + (i - 1)2\pi/3) \right),$$

where φ is a martingale driven by B with $a < \varphi(t) < 3a$. Then the processes X_i are martingales, and it can be shown that $\gamma^*_\mu(t) > 3a^2/4$. Since the price processes in this market are martingales, relative arbitrage does not exist. Since the motions induced by W, θ, and φ span \mathbb{R}^3, the covariance matrix is nonsingular. This market is not strongly nondegenerate.
Let $n = 3$, let $T > 0$, and let $0 < a < e^{-T/2}/9$. Suppose that (W, θ, B) is a 3-dimensional Brownian motion with the usual filtration \mathcal{F}. For $t \in [0, T]$ and for $i = 1, 2, 3$, define

$$X_i(t) = \left(\frac{1}{3} + \varphi(t)e^{t/2} \cos (\theta(t) + (i - 1)2\pi/3) \right),$$

where φ is a martingale driven by B with $a < \varphi(t) < 3a$. Then the processes X_i are martingales, and it can be shown that $\gamma^*_\mu(t) > 3a^2/4$. Since the price processes in this market are martingales, relative arbitrage does not exist. Since the motions induced by $W, \theta,$ and φ span \mathbb{R}^3, the covariance matrix is nonsingular. This market is not strongly nondegenerate.
Let $n = 3$, let $T > 0$, and let $0 < a < e^{-T/2}/9$. Suppose that (W, θ, B) is a 3-dimensional Brownian motion with the usual filtration \mathcal{F}. For $t \in [0, T]$ and for $i = 1, 2, 3$, define

$$X_i(t) = \kappa(t)\left(\frac{1}{3} + \varphi(t)e^{t/2} \cos(\theta(t) + (i - 1)2\pi/3)\right),$$

where φ is a martingale driven by B with $a < \varphi(t) < 3a$. Then the processes X_i are martingales, and it can be shown that $\gamma^*_\mu(t) > 3a^2/4$. Since the price processes in this market are martingales, relative arbitrage does not exist. Since the motions induced by $\kappa > 0$, θ, and φ span \mathbb{R}^3, the covariance matrix is nonsingular. This market is not strongly nondegenerate.
Volatility and arbitrage

Conclusion: $\gamma_{\mu}^*(t) > \varepsilon > 0$ will generate relative arbitrage, but not over arbitrarily short intervals.
References

Volatility and arbitrage

Thank you!